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Scheme 1. Synthesis of 2,3-dihydro-1,5-b
An efficient synthesis of 1,3-diaryl-2,3-dihydro-1,5-benzothiazepines has been developed by the reaction
of various 1,3-diaryl-2-propenones with 2-aminothiophenol in water under neutral conditions catalysed
by SDS. Excellent chemoselectivity was observed for substrates possessing halogen atoms or nitro/
alkoxy/thioalkyl groups which did not undergo competitive aromatic nucleophilic substitution of the
halogen atoms or the nitro group, reduction of the nitro or the a,b-unsaturated carbonyl group, or
dealkylation of the alkoxy/thioalkoxy groups.

� 2008 Elsevier Ltd. All rights reserved.
1
The broad spectrum of biological activity of compounds bear-
ing the 1,5-benzothiazepine moiety has stimulated interest in
developing new synthetic protocols for their synthesis (Scheme
1).2,3 There remains the necessity to develop a more effective and
convenient synthetic procedure as the reported methods have
one or more disadvantages such as the use of a high boiling solvent
(e.g., DMF) that is difficult to recover, excess amounts of acid or
base, special apparatus, corrosive (e.g., HCl gas, TFA) and hazardous
(e.g., pyridine, piperidine, halogenated hydrocarbon) reagents/sol-
vents and special efforts to prepare the catalysts and adsorb the
reactants onto a solid support.

The increasing concern about the tight legislation on the main-
tenance of greenness in synthetic pathways/processes4 led us to
develop a method using a reagent that is less hazardous and can
ll rights reserved.
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be used in catalytic amounts and water as solvent as an alternative
to volatile organic solvents. Water as a reaction medium has
gained importance in the development of sustainable chemistry.5

In continuation of our efforts in developing ‘On Water’ synthetic
methodologies6, we report a convenient synthesis of 1,5-benzo-
thiazepines in water.

The commonly adopted strategy for the synthesis of benzo-
thiazepines involves cyclocondensation of 1,3-diarylpropenones
with 2-aminothiophenol (Scheme 1). Our initial efforts on the reac-
tion of 1,3-diphenylpropenone (1) with 2-aminothiophenol (2)
under neat conditions at 110 �C (oil-bath) for 12 h did not produce
any significant amount of 1,3-diphenyl-2,3-dihydro-1,5-benzo-
thiazepine (3). When the reaction was carried out in water under
reflux (oil-bath temperature 110 �C) for 12 h, 3 was formed in
15% yield. Recently, it has been demonstrated that the yields in
carrying out the reaction in aqueous medium were superior in
brine than those in water.7 When we used brine, benzothiazepine
3 was obtained in 18% yield. We realised that the presence of the
aryl rings attribute hydrophobic character to 1 and in a biphasic
system the interactions required for the reaction to occur are not
attained. Hence, we thought that the use of a surface-active agent
as a catalyst/additive may be beneficial as it would assemble with
the reactants through hydrophobic interactions excluding the
water molecules from the organic phase forming micelles.8 We
were happy to note that treatment of 1 (1 mmol) with 2
(1.1 mmol) in water (5 mL) at 110 �C (oil-bath) for 12 h in the
presence of SDS (1 mmol) afforded 3 in 65% yield. The use of 50,
10 and 5 mol % of SDS resulted in the formation of 3 in 65%, 65%
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and 40% yields, respectively, under similar conditions indicating
that a 10 mol % amount of SDS is the critical amount required for
the cyclocondensation. The use of brine as the reaction medium
instead of water afforded comparable yields in the presence of
SDS (10 mol %). The use of water as the reaction medium was
found to be necessary as the treatment of 1 with 2 in the presence
of SDS (10 mol %) at 110 �C (oil-bath) for 12 h under neat
conditions afforded 3 in only 20% yield.

To establish the generality of this method, we investigated the
cyclocondensation of various substituted 1,3-diarylpropenones
with 2. The starting 1,3-diarylpropenones were prepared by the
Claisen–Schmidt condensation between various substituted aryl
methyl ketones with aryl aldehydes following the LiOH�H2O
catalysed dual activation procedure.9 The reaction of various 1,3-
diarylpropenones with 2 afforded the corresponding 1,3-diaryl-
2,3-dihydro-1,5-benzothiazepines in 61–79% yields (Table 1). The
reaction was compatible with various electron-donating (Me,
OMe and SMe) and electron-withdrawing (Br, Cl, F, NO2 and
SO2Me) substituents as well as heteroaryl rings. Substrates with
halogen atoms10 (Table 1, entries 2–6, 10, 12 and 18–20) and
NO2groups11 (Table 1, entries 7–9 and 14) did not undergo aro-
matic nucleophilic substitution. The NO2

12 and the a,b-unsaturated
carbonyl13 groups were not reduced although thiols possess single
electron transfer properties.14 For substrates with aryl alkyl ether/
thioether (Table 1, entries 11–20) groups, no O/S-dealkylation took
place.15,16 The best results were obtained when the reactions were
carried out as follows: the 1,3-diarylpropenone in water was
heated under reflux (oil-bath temp 110 �C) under magnetic stirring
until it formed a melt and mixed with water as tiny droplets.
Table 1
Synthesis of 2,3-dihydro-1,5-benzothiazepinesa

Entry Substrate Time (h) Yieldb,c (%)

O

R1 R2

1 R1 = R2 = H 12 65
2 R1 = H; R2 = 4-Cl 10 72
3 R1 = 4-Cl; R2 = H 12 76
4 R1 = H; R2 = 4-F 12 79
5 R1 = 4-F; R2 = H 12 75
6 R1 = 4-Br; R2 = H 12 76
7 R1 = 4-NO2; R2 = H 10 71
8 R1 = H; R2 = 4-NO2 16 72
9 R1 = H; R2 = 2-NO2 16 72

10 R1 = 4-Cl; R2 = 2-F 8 64
11 R1 = H; R2 = 4-OMe 12 65
12 R1 = 4-Cl; R2 = 4-OMe 12 74
13 R1 = 4-Me; R2 = 4-OMe 12 61
14 R1 = 4-NO2; R2 = 4-OMe 10 66
15 R1 = H; R2 = 4-SMe 10 65
16 R1 = 4-SMe; R2 = 4-Me 8 71
17 R1 = 4-CF3; R2 = 4-SMe 6 73
18 R1 = 4-Cl; R2 = 4-SMe 12 68
19 R1 = 4-SMe; R2 = 4-Cl 10 64
20 R1 = 4-SMe; R2 = 4-F 6 68
21 R1 = 4-CF3; R2 = 4-SO2Me 12 62

22

O

S

10 66

23

O

12 65

a The substrate (1 mmol) was treated with 2 (1.1 mmol) in the presence of SDS
(10 mol %) at 110 �C (oil-bath) in water (5 mL).

b The yield of 1,3-diaryl-2,3-dihydro-1,5-benzothiazepine after chromatographic
purification.

c The products were characterized by IR, NMR and MS.
2-Aminothiophenol 2 was added followed by SDS (10 mol %), and
the mixture was heated under reflux (oil-bath temp 110 �C). When
the reactants and SDS were added together, a solid formed which
settled at the bottom of the flask resulting in lower yields due to
incomplete consumption of the starting materials.

In conclusion, we have described a convenient synthesis of 1,3-
diaryl-2,3-dihydro-1,5-benzothiazepines by the reaction of 1,3-
diaryl-2-propenones with 2-aminothiophenol in water catalysed
by SDS.17 The substantial rate acceleration in carrying out the reac-
tion of insoluble substrates in aqueous medium makes this proto-
col an ‘on water’18 synthesis. The advantages are the use of a cheap,
easy to handle and commercially available catalyst and water as
the reaction medium in place of harmful volatile organic solvents.
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